
TWO PROOFS OF FARKAS’ LEMMA

DAVID RAHMAN

This note presents an algebraic proof of Farkas’ Lemma based on Gauss-Jordan elimination,

following Gale (1960), and a geometric proof based on the separating hyperplane theorem.

Rn is our ambient space, with x, y, b, c denoting vectors, A, B denoting matrices, λ, µ scalars,

and m, n natural numbers.

1. Linear Independence, Bases and Rank

The vectors x1, . . . , xk ∈ Rn are linearly independent if given α1, . . . , αk ∈ R,

α1x1 + · · ·+ αkxk = 0 ⇒ α1 = · · · = αk = 0.

Lemma 1. If each of the vectors y0, y1, . . . , ym ∈ Rn is a linear combination of the vectors

x1, . . . , xm ∈ Rn then the yj’s are linearly dependent.1

Proof. Proceed by induction on m. Starting with m = 1, let y0 = α0x1 and y1 = α1x1. If both

α0 and α1 are equal to zero then y0 = y1 = 0, so the yj’s are dependent. Otherwise, without

loss say α0 ̸= 0. Now, α0y1 − α1y0 = α0α1x1 − α1α0x1 = 0x1 = 0, implying dependence.

Assume that the claim holds for m = k − 1 and that

yj =
k∑

i=1

αijxi, j = 0, 1, . . . , k.

In other words, each yj is a linear combination of the xi’s. We must show that the yj’s are

linearly dependent. Again, if all the αij’s equal zero then all the yj’s are zero, implying linear

dependence. Now assume that not all the αij’s are zero. Without loss of generality, say

α10 ̸= 0 and define, for j = 1, . . . , k,

zj = yj −
α1j

α10

y0 =
k∑

i=1

αijxi −
α1j

α10

k∑
i=1

αi0xi =
k∑

i=2

(
αij −

α1j

α10

αi0

)
xi.

But now each of the k vectors z1, . . . , zk is a linear combination of the k−1 vectors x2, . . . , xk.

By the induction hypothesis, the zj’s are linearly dependent, that is, there exist numbers

β1, . . . , βk, not all zero, such that β1z1 + · · ·+ βkzk = 0. But since

0 =
k∑

j=1

βjzj =
k∑

j=1

βjyj −
y0
α10

k∑
j=1

βjα1j,

it follows that the yj’s are linearly dependent. □
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1That is, not linearly independent: α0y0 + α1y1 + · · ·+ αmym = 0 for some α0, α1, . . . , αm, not all zero.
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Every vector in Rn is a linear combination of e1, . . . , en—where ei = (0, . . . , 0, 1, 0, . . . , 0) has

a 1 in the ith place and zeros elsewhere for every i—so every collection of n + 1 vectors is

linearly dependent by Lemma 1. The following corollary rephrases this observation.

Corollary 1. Every system of n homogeneous linear equations in n + 1 unknowns has a

nonzero solution.

Proof. Consider the system of homogeneous equations

n∑
j=0

αijξj = 0, i = 1, . . . , n.

Let aj = (α1j, . . . , αnj) for j = 0, . . . , n. These are n + 1 vectors in Rn, so by the previous

paragraph they are linearly dependent. Therefore, there are numbers ξ0, ξ1, . . . , ξn, not all

zero, such that
n∑

j=0

ajξj = 0,

i.e., the numbers ξ0, ξ1, . . . , ξn are a nonzero solution of our n homogeneous equations. □

Clearly, Corollary 1 extends immediately to n equations in any number of unknowns greater

than n. If S ⊂ Rn is a collection of vectors, the rank of S is the maximum number of linearly

independent vectors that can be simultaneously selected from S. If the rank of S is r then

any set of r linearly independent vectors from S is called a basis of S.

Lemma 2. Let S ⊂ Rn. The vectors x1, . . . , xr ∈ S are a basis of S if and only if every

vector in S is a linear combination of the xi’s.

Proof. For necessity, suppose that every vector y ∈ S is a linear combination of the xi’s.

By Lemma 1, S contains no larger set of linearly independent vectors, since any set of more

than r vectors must be linearly dependent by virtue of being linear combinations of the xi’s.

Therefore, S has rank r and the xi’s form a basis of S.

For sufficiency, suppose that the xi’s form a basis of S. By definition of basis, for any other

vector y ∈ S, the collection {y, x1, . . . , xr} is linearly dependent, implying

α0y +
r∑

i=1

αixi = 0

for some scalars α0, α1, . . . , αr, not all zero. Moreover, α0 ̸= 0, since otherwise the xi’s would

be linearly dependent. Therefore,

y = − 1

α0

r∑
i=1

αixi

and y is a linear combination of the xi’s, as claimed. □
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By Lemma 2, the vectors e1, . . . , en form a basis of Rn, as does any collection of n linearly

independent vectors. If A ∈ Rm×n is a matrix, its row rank is the rank of its collection of row

vectors, and its column rank is the rank of its collection of column vectors.

Lemma 3. The row rank and column rank of a matrix coincide.

Proof. Let r be the row rank and s the column rank of a given matrix

A =

 α11 · · · α1n

...
. . .

...

αm1 · · · αmn

 .

For a contradiction, suppose that r < s. Choose a row basis for A. Reordering rows if

necessary, assume that the row basis consists of the first r rows of A, labeled a1, . . . , ar.

Likewise, choose a column basis for A, which, by reordering columns if necessary, we may

assume consists of the first s columns of A, labeled a1, . . . , as.

Let âi = (αi1, . . . , αis) be the vector consisting of the first s entries of the ith row of A. Since

r < s, by Corollary 1, the system of equations

âiy = 0, i = 1, . . . , r,

has a nonzero solution vector ȳ. Furthermore, since a1, . . . , ar form a row basis for A, by

Lemma 2, for every row ak there exist numbers β1k, . . . , βrk such that

ak =
r∑

i=1

βika
i, k = 1, . . . ,m.

Truncating the last n− s− 1 entries from each vector in the equations above trivially implies

âk =
r∑

i=1

βikâ
i, k = 1, . . . ,m,

therefore

âkȳ =

(
r∑

i=1

βikâ
i

)
ȳ =

r∑
i=1

βik

(
âiȳ
)
= 0, k = 1, . . . ,m.

Letting ȳ = (η̄1, . . . , η̄s), we may write the k equations above in vector form as follows:

s∑
j=1

η̄jaj = 0.

But this implies that the column vectors a1, . . . , as are linearly dependent, which contradicts

the assumption that they are a basis. Therefore, our assumption that r < s must have been

flawed, and r ≥ s. A symmetric argument exchanging the roles of rows and columns yields

the inequality s ≥ r, whence r = s, as was claimed. □

By Lemma 3, we may simply refer to the rank of a matrix A without having to distinguish

between row rank and column rank.
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Corollary 2. If the vectors a1, . . . , an ∈ Rm are linearly independent then for any numbers

γ1, . . . , γn there is a vector y ∈ Rm such that

yaj = γj, j = 1, . . . , n.

Proof. Let A be the matrix whose columns are a1, . . . , an. By Lemma 3, the rows of A have

rank n, so if the vectors a1, . . . , an form a row basis of A (after reshuffling of rows, if necessary)

then they constitute n linearly independent vectors. By Lemma 2, therefore, every vector

c = (γ1, . . . , γn) is a linear combination of a1, . . . , an, that is,

c =
n∑

i=1

ηia
i

for some numbers η1, . . . , ηn. Reorganizing this system of equations yields precisely γj = yaj

for j = 1, . . . , n, as required, with the vector y = (η1, . . . , ηn, 0, . . . , 0). □

2. Linear Equations and Inequalities

Theorem 1. Given A ∈ Rm×n and b ∈ Rm, either (i) there exists x ∈ Rn such that Ax = b,

or (ii) there exists y ∈ Rm such that yA = 0 and yb = 1, but not both.

Proof. First, let us see that (i) and (ii) cannot both hold simultaneously. Otherwise, there

would exist vectors x and y such that Ax = b, yA = 0 and yb = 1. Multiplying by y

gives, though, 0 = 0x = yAx = yb = 1, a contradiction if there ever was one. Next,

let us show that if (i) fails then (ii) must hold.2 To this end, let a1, . . . , as be a column

basis for A. Since, by hypothesis, there is no x such that Ax = b, it must be the case

that the vectors a1, . . . , as, b are together linearly independent, otherwise there would be

a solution x to Ax = b. By Corollary 2, there exists a vector y such that yaj = 0 for

j = 1, . . . , s and yb = 1. But since the vectors a1, . . . , as form a column basis for A, every

column vector ak can be written as a linear combination ak = λ1a1 + · · · + λsas, therefore

yak = y(λ1a1+ · · ·+λsas) = λ1ya1+ · · ·+λsyas = 0 for k = 1, . . . , n. In other words, yA = 0

and yb = 1, i.e., (ii) holds, as required. □

Example 1. Consider the following system of two equations in three unknowns:[
−4 2 −5

2 −1 2.5

] ξ1

ξ2

ξ3

 =

[
1

1

]
.

Multiplying both sides by the vector (1, 2), we obtain the implication

0ξ1 + 0ξ2 + 0ξ3 = 3,

which is clearly impossible. Hence, there is no vector (ξ1, ξ2, ξ3) that solves the system of

equations above.

2This is logically equivalent to the assertion that if (ii) fails then (i) must hold.
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Our next result, known as Farkas’ Lemma, extends Theorem 1 above by including linear

inequalities. It is a crucial first result on which our duality framework will be based.

Let us begin with some preliminary background for its proof. Suppose that x = (ξ1, . . . , ξn)

solves the system of equations Ax = b. Equivalently, yAx = yb for every vector y. Solving out

the variable ξn from this system of equations could involve the following calculations:

yAx = yb ⇔ y
n∑

j=1

ajξj = yb ⇔ yanξn +
n−1∑
j=1

yajξj = yb.

Therefore, yan ̸= 0 implies the following expression for ξn:

ξn =
1

(yan)

[
(yb)−

n−1∑
j=1

(yaj)ξj

]
.

Of course, ξn ≥ 0 if yaj ≥ 0, ξj ≥ 0 for j = 1, . . . , n−1, yb < 0 and yan < 0. We will find such

y and ξj in the proof below when looking for a nonnegative solution to Ax = b. Substituting

this expression for ξn back into the original system of equations yields

n−1∑
j=1

ajξj + anξn = b ⇔
n−1∑
j=1

ajξj +
1

(yan)

[
(yb)−

n−1∑
j=1

(yaj)ξj

]
an = b

multiply both sides by (yan) ⇔
n−1∑
j=1

(yan)ajξj +
n−1∑
j=1

[(yb)− (yaj)ξj] an = (yan)b

collect terms and rearrange ⇔
n−1∑
j=1

[(yan)aj − (yaj)an] ξj = (yan)b− (yb)an.

This is precisely the system of equations in n−1 unknowns that is used in the proof of Farkas’

Lemma below. The vectors (yan)b− (yb)an and (yan)aj − (yaj)an are what is left to satisfy

the system of equations with unknowns (ξ1, . . . , ξn−1) after substituting for ξn above.

Theorem 2. Given A ∈ Rm×n and b ∈ Rm, either (i) there exists x ∈ Rn such that x ≥ 0

and Ax = b, or (ii) there exists y ∈ Rm such that yA ≥ 0 and yb < 0, but not both.

Proof. Notice first that (i) and (ii) cannot hold simultaneously: otherwise, Ax = b implies

yAx = yb, but yA ≥ 0 together with x ≥ 0 imply yAx ≥ 0, contradicting yb < 0. Therefore,

if either (i) or (ii) holds then only that one alternative holds. It remains to show that if (i)

fails then (ii) holds.3 To this end, assume that there does not exist a vector x ≥ 0 such that

Ax = b. This could be for two reasons: (a) the equation Ax = b has no solution, even when

the restriction that x be nonnegative is rescinded, or (b) there is a solution to the equation

Ax = b but not one that also satisfies x ≥ 0. If (a) is the reason, so Ax = b has no solution at

all, then by Theorem 1 there exists a vector y such that Ay = 0 and yb = −1, implying (ii).

Now suppose that (b) is the reason, so there exists a solution x to Ax = b but no nonnegative

solution. We will proceed by induction on n, the number of columns of A.

3Of course, showing that if (ii) fails then (i) must hold is logically equivalent.
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If n = 1 then Ax = b becomes a1ξ1 = b, where ξ1 ∈ R and a1, b ∈ Rm. With the previous

paragraph’s logic, assume that this equation does have a solution but no nonnegative one:

ξ1 < 0. Letting y = −b, clearly yb = −b · b < 0 and ya1 = yb/ξ1 = −b · b/ξ1 > 0, so (ii) holds.

Pursuing induction, assume now that the theorem holds for the first n − 1 columns of A.

Clearly, if Ax = b has no nonnegative solution then neither does the equation

n−1∑
j=1

ajξj = b,

which imposes ξn = 0. By the induction hypothesis, there exists a vector ŷ ∈ Rm such that

ŷaj ≥ 0 for j = 1, . . . , n− 1 and ŷb < 0. If ŷ also satisfies ŷan ≥ 0 then ŷ satisfies (ii) and we

are done, so suppose that ŷan < 0 and let

âj = (ŷan)aj − (ŷaj)an, j = 1, . . . , n− 1, b̂ = (ŷan)b− (ŷb)an.

The vectors âj and b̂ satisfy ŷâj = ŷb̂ = 0. Consider the following system of equations:

n−1∑
j=1

âj ξ̂j = b̂.

This system of equations can have no nonnegative solution. To see why, if ξ̂1, . . . , ξ̂n−1 were

such a nonnegative solution then substituting for âj and b̂ would yield

n−1∑
j=1

âj ξ̂j = b̂ ⇔
n−1∑
j=1

[(ŷan)aj − (ŷaj)an] ξ̂j = (ŷan)b− (ŷb)an

⇔
n−1∑
j=1

aj ξ̂j +
1

(ŷan)

[
(ŷb)−

n−1∑
j=1

(ŷaj)ξ̂j

]
an = b.

But ŷan < 0, ŷaj ≥ 0 and ξ̂j ≥ 0 for j = 1, . . . , n− 1, and ŷb < 0, therefore

ξ̂n =
1

(ŷan)

[
(ŷb)−

n−1∑
j=1

(ŷaj)ξ̂j

]
≥ 0,

so the vector (ξ̂1, . . . , ξ̂n) would constitute a nonnegative solution of the system Ax = b,

contradicting our assumption that it has no nonnegative solution. Hence, by induction, there

exists a vector ẑ ∈ Rm such that ẑâj ≥ 0 for j = 1, . . . , n− 1 and ẑb̂ < 0.

Finally, let

y = (ŷan)ẑ − (ẑan)ŷ.

It is easy to see that this vector y satisfies

yan = [(ŷan)ẑ − (ẑan)ŷ] an = (ŷan)(ẑan)− (ẑan)(ŷan) = 0,

yb = [(ŷan)ẑ − (ẑan)ŷ] b = (ŷan)ẑb− (ẑan)ŷb = ẑ [(ŷan)b− (ŷb)an] = ẑb̂ < 0, and

yaj = [(ŷan)ẑ − (ẑan)ŷ] aj = (ŷan)ẑaj − (ẑan)ŷaj = ẑ [(ŷan)aj − (ŷaj)an] = ẑâj ≥ 0

for j = 1, . . . , n− 1. Therefore, the vector y satisfies (ii) and the theorem is proved. □
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Example 2. Consider the following system of two equations in three unknowns:[
4 1 −5

1 0 2

] ξ1

ξ2

ξ3

 =

[
1

1

]
.

The alternative to existence of a nonnegative solution to the system above is

4η1 + η2 ≥ 0, η1 ≥ 0, −5η1 + 2η2 ≥ 0, η1 + η2 < 0.

This alternative system of inequalities is impossible to satisfy. Indeed, η1 ≥ 0 and η1+ η2 < 0

imply η2 < 0, which together with η1 ≥ 0 contradicts −5η1 + 2η2 ≥ 0. By Farkas’ Lemma

there exists a nonnegative vector (ξ1, ξ2, ξ3) that solves the system of equations above.

Given a matrix A, consider its column vectors a1, . . . , an ∈ Rm. The set of all nonnegative

linear combinations of these column vectors forms a cone-shaped region surrounded by the

column vectors themselves. That the equation Ax = b has a nonnegative solution x can be

interpreted as the vector b lying inside this cone. Conversely, the statement that there is no

nonnegative solution to Ax = b means that the vector b does not lie in the cone generated

by the column vectors of A. In this case, Farkas’ Lemma asserts that there is a vector y that

makes an acute angle with aj for j = 1, . . . , n and an obtuse angle with b. Dually, there exists

a hyperplane that separates b and the cone generated by a1, . . . , an. See Figure 1 below.

Figure 1. Illustration of Farkas’ Lemma

3. A Separating Hyperplane Theorem

A subset C ⊂ Rn is convex if λx + (1 − λ)y ∈ C for every x, y ∈ C and λ ∈ [0, 1]. A subset

H ⊂ Rn is called a hyperplane if H = {x ∈ Rn : px = α} for some p ∈ Rn and α ∈ R,
where px =

∑
i pixi. A closed halfspace is any subset of the form {x ∈ Rn : px ≤ α}, and an

open halfspace any subset of the form {x ∈ Rn : px < α}. I will also use the more compact

notation [px = α], [px ≤ α], etc. A subset of S ⊂ Rn is closed if it contains all its limit

points, and open if for every y ∈ S there exists ε > 0 such that Bε(y) = [∥x− y∥ < ε] ⊂ S,

where ∥z∥ = (
∑

i z
2
i )

1/2 is the usual Euclidean norm.
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Lemma 4. If C ⊂ Rn is a closed, convex set and y ∈ Rn \ C a point outside C then there

exists x∗ ∈ C that minimizes the distance between y and C:

x∗ ∈ argmin
x∈C

∥x− y∥ .

Moreover, ∥x∗ − y∥ > 0.

Proof. First, notice that δ = inf{∥x− y∥ : x ∈ C} > 0. By definition of the infimum, there

is a sequence {xm} ⊂ C such that ∥xm − y∥ → δ as m → ∞. Taking a subsequence if

necessary, for every ε > 0 there is a sequence {xm} ⊂ C such that δ ≤ ∥xm − y∥ ≤ δ + ε.

The closed set {x ∈ Rn : ∥x− y∥ ∈ [δ, δ+ ε]} is contained in the closed ball with center y and

radius δ + ε, hence is bounded, too. Therefore, {xm} has a convergent subsequence by the

Bolzano-Weierstrass Theorem. Let x∗ be its limit. Continuity of Euclidean distance implies

∥x∗ − y∥ = δ. By hypothesis, C is closed, so x∗ ∈ C. But y ̸∈ C, so x∗ ̸= y and δ > 0. □

Proposition 1. If C ⊂ Rn is a closed, convex set and y ∈ Rn \ C a point outside C then

there exists a hyperplane [px = α] that separates y and C, that is, py < α < px for all x ∈ C.

Proof. After a translation by −y, assume without loss that y = 0. Let x∗ ∈ C be a point of

C that minimizes the distance between C and 0, that is, x∗ ∈ argmin{∥x∥ : x ∈ C}. Such x∗

exists by Lemma 3.2. Let m be the midpoint on the line joining 0 and x∗, that is, m = 1
2
x∗.

Let [px = α] be the hyperplane that passes through m and is perpendicular to the vector x∗.

Specifically, let p = x∗/ ∥x∗∥ and α = pm = (x∗/ ∥x∗∥) · x∗/2 = 1
2
(x∗ · x∗)/ ∥x∗∥ = 1

2
∥x∗∥ > 0.

We will now show that the vector 0 lies on one side of this hyperplane and every x ∈ C lies on

the other side. First, p0 = 0 < α, so 0 belongs to the open halfspace [px < α]. Next, notice

that px∗ = x∗ · x∗/ ∥x∗∥ = ∥x∗∥ > 1
2
∥x∗∥ = α, so x∗ belongs instead to [px > α]. Finally,

consider any x ∈ C. Since C is a convex set, λx+(1−λ)x∗ ∈ C for every λ ∈ (0, 1), and since

x∗ minimizes the norm in C, clearly ∥x∗∥2 ≤ ∥λx+ (1− λ)x∗∥2. But ∥x∥2 = x · x, therefore

x∗ · x∗ ≤ (x∗ + λ(x− x∗)) · (x∗ + λ(x− x∗))

= x∗ · x∗ + 2λx∗ · (x− x∗) + λ2(x− x∗) · (x− x∗)

⇔ 0 ≤ x∗ · (x− x∗) + 1
2
λ(x− x∗) · (x− x∗).

Letting λ > 0 decrease to zero, it follows that x∗ · (x − x∗) ≥ 0. But x ∈ C was arbitrary,

so x∗ · (x − x∗) ≥ 0 for every x ∈ C. Since x∗ = 2m, we may rewrite this inequality as

∥x∗∥ p · (x − 2m) ≥ 0, or equivalently px ≥ 2pm. Since pm > 0, clearly 2pm > pm, hence

px > pm = α, proving that indeed x lies on the other side of our hyperplane, as required. □

This separating hyperplane theorem leads to a geometric proof of Farkas’ Lemma. First, a

preliminary result. The cone generated by a set of vectors a1, . . . , an is the set

cone{a1, . . . , an} = {λ1a1 + · · ·+ λnan : (λ1, . . . , λn) ≥ 0},

For any matrix A ∈ Rm×n, the cone generated by its columns is denoted by cone(A).



TWO PROOFS OF FARKAS’ LEMMA 9

Lemma 5. If A ∈ Rm×n is any matrix, cone(A) is a closed convex set.

Proof. The following proof is based on Vohra (2005). For convexity, let y, y′ ∈ cone(A). By

definition of cone(A), there exist x, x′ ≥ 0 such that y = Ax and y′ = Ax′. Given λ ∈ [0, 1],

λy + (1− λ)y′ = λAx+ (1− λ)Ax′ = A(λx+ (1− λ)x′),

so, since λx+ (1− λ)x′ ≥ 0, we must have λy + (1− λ)y′ ∈ cone(A).

We prove that cone(A) is closed in two steps. First, suppose that all the columns of A

are linearly independent. Let {wt} ⊂ cone(A) be a convergent sequence, with limit w. We

will show that w ∈ cone(A). Since each wt belongs to cone(A), there exists xt ≥ 0 such

that wt = Axt. Because A′A and A have equal rank, A′A is invertible and the projection

(A′A)−1A′ is continuous. Therefore, Axt → w implies xt → (A′A)−1A′w = x. Since A is

continuous, xt → x implies Axt = wt → w = Ax, and w ∈ cone(A).

When not necessarily all of A’s columns are linearly independent, we will show that cone(A) is

the union of the cones generated by all the linearly independent subsets of columns of A. Let

b ∈ cone(A), so there is a vector x = (ξ1, . . . , ξn) ≥ 0 such that Ax = b. Let S = {j : ξj > 0}
and B be the matrix consisting of the columns indexed by S. Although there may be many

ways of expressing b as a nonnegative linear combination of the columns of A, assume that x

uses the fewest number of columns, therefore b cannot be expressed as a nonnegative linear

combination of fewer than |S|−1 columns of A. By construction, b ∈ cone(B). If the columns

of B are linearly independent, we are done. If not, there is a nonzero linear combination of

the columns of B, call it z = (ζ1, . . . , ζn) with {j : ζj > 0} ⊂ S, such that Az = 0. For any

t ∈ R, therefore, A(x− tz) = b. We will find a scalar t such that (1) ξj − tζj ≥ 0 for all j ∈ S

and (2) ξj − tζj = 0 for at least one j ∈ S. This leads to a contradiction, since with such t,

the vector b can be written as a nonnegative linear combination of |S| − 1 columns of B.

We may find such t as follows. If ζj > 0 for all j ∈ S, let t = minj{ξj/ζj : j ∈ S} and j∗

satisfy ξj∗/ζj∗ = t. Such t clearly satisfies (1) and (2), since ξj − tζj ≥ ξj − (ξj/ζj)ζj ≥ 0

for every j with equality at j∗. If on the other hand ζj < 0 for at least one j ∈ S, set

t = −maxj{|ξj/ζj| : ζj < 0} and let j∗ satisfy ξj∗/ζj∗ = t. For any j ∈ S such that ζj ≥ 0,

clearly ξj − tζj ≥ 0, since t < 0 and ξj ≥ 0. For any j ∈ S such that ζj < 0, the definition of

t gives ξj − tζj ≥ ξj − (ξj/ζj)ζj ≥ 0 with equality at j∗. Hence, the columns of B are linearly

independent. Since b was arbitrary, every b ∈ cone(A) can be written as nonnegative linear

combination from a linearly independent subset of columns of A.

Our final step in proving that cone(A) is closed is the following. Since A has finitely many

column vectors, it has finitely many linearly independent subsets of column vectors. Having

proved that every b ∈ cone(A) belongs to cone(B) for some matrix B whose columns are a

linearly independent subset of the columns of A, and that cone(B) is closed, it follows that

cone(A) is closed from the fact that cone(A) is the union of finitely many closed sets, namely

the finitely many cone(B)’s, and the union of finitely many closed sets is closed. □
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Theorem 3. Given A ∈ Rm×n and b ∈ Rm, either (i) there exists x ∈ Rn such that x ≥ 0

and Ax = b, or (ii) there exists y ∈ Rm such that yA ≥ 0 and yb < 0, but not both.

Geometric Proof. We will use the separating hyperplane theorem to prove that if (i) fails

then (ii) must hold. (The argument that (i) and (ii) cannot both hold is omitted here, see

the previous algebraic proof.) If (i) fails then b ̸∈ cone(A) = {x ∈ Rn : Ax = b, x ≥ 0}.
By Lemma 5, cone(A) is a closed convex set, so by Proposition 1 there exists a hyperplane

[px = α] that separates b from cone(A), that is, pb < α < py for all y ∈ cone(A). Since

0 ∈ cone(A), it follows that α < 0. If aj is the jth column vector of A, we will prove that

paj ≥ 0, showing that the vector y = p satisfies (ii). Since λaj ∈ cone(A) for every λ ≥ 0 and

px > α for every x ∈ cone(A), it follows that pλaj > α. If paj < 0 then making λ arbitrarily

large renders λpaj less than α, a contradiction. Therefore, paj ≥ 0 for all j. □

4. Exercises

Exercise 1. Show that for every system of linear inequalities and/or equations there exists

a matrix A, a vector b and vector of variables x such that the original system has a solution

if and only if there exists a nonnegative solution x ≥ 0 to the system Ax = b. Show that the

same conclusion holds for the system Ax ≤ b, as well as the system Ax ≤ b for x ≥ 0.

Exercise 2. Prove that given a matrix A and vector b, either there exists a vector x such

that Ax ≤ b or there exists a vector y ≥ 0 such that yA = 0 but yb < 0. Prove that given a

matrix A and vector b, either there exists a vector x ≥ 0 such that Ax ≤ b or there exists a

vector y ≥ 0 such that yA ≥ 0 but yb < 0.

Exercise 3. A square matrix A ∈ Rn×n is called stochastic if
∑

i αij = 1 for j = 1, . . . , n.

An invariant distribution for A is a vector π ∈ Rn such that π ≥ 0,
∑

j πj = 1 and Aπ = π.

Show that every stochastic matrix has an invariant distribution.

Exercise 4. Prove that the union of finitely many closed sets is closed. Prove that the

arbitrary intersection of (i) closed sets is closed, and (ii) convex sets is convex.

Exercise 5. Given two subsets S, T ⊂ Rn, their Minkowski sum is the set

S + T = {y + z : y ∈ S, z ∈ T}.

Show that the Minkowski sum of two convex sets is a convex set.

Exercise 6. Show that if C and D are two closed, convex sets such that C ∩D = ∅ and C

is compact then there is a hyperplane [px = α] such that px > α > py for all z ∈ C and

y ∈ D. Find an example of two disjoint, noncompact, closed and convex sets for which no

such hyperplane exists. (A subset of Rn is compact if it is closed and bounded.)


